EAF SMARTRafo Solution

Riccardo Reboldi - TES Transformer Electro Service S.r.l. – Italy

Simone Zanoni, Laura Mazzoldi, Beatrice Marchi - Università degli Studi di Brescia - Italy
Agenda

- Introduction
- Life cycle cost model
- SMART Transformer
- Numerical study
- Conclusions
Agenda

- Introduction
- Life cycle cost model
- SMART Transformer
- Numerical study
- Conclusions
Since 1916:
A Century in Energy Applications

1916
- Tamini starts its activities in Milan, producing small oil immersed transformers

1961
- Production is moved to the new Melegnano premises

1988
- Acquisition of Novara-based Verbano Trasformatori S.r.l.

1991
- The Company acquires former OEL facilities in Legnano

1995
- Acquisition of Veneta Trasformatori Distribuzione S.r.l. (now V.T.D. Trasformatori S.r.l.), based in Valdagno (Vicenza province)

2000
- The Group establish a commercial entity for the North American market, Tamini Transformers USA

2006-2010
- In 2006 the Group started a €20m investment plan to revamp the Legnano plant

2014
- The Group has been acquired by Terna Group

2015
- The Group finalized the business combination with TES Transformer Electro Service S.r.l., based in Ospitaletto (Brescia province)

Since 1916:
A Century in Energy Applications
Electric Arc Furnace (EAF)

- **PAST** - Main improvements in energy performance:
 - Reduction of Power Off time
 - Reduction of Tap-to-Tap time
 - Chemical energy use
 - Foamy slag production
 - Electronic adjustment of the electrodes
 - Increasing of arc voltage and use of reactors to stabilize

- Energy still represents a significant share of the total costs

- **TODAY** - New improvements in the EAF process are difficult to obtain
 - Needs of improving other components of the system: i.e. EAF Transformer
EAF Transformer

- EAF transformer are exposed to more critical conditions than any distribution transformer
 - Very high secondary currents and low secondary voltage
 - Heavy current fluctuations and unbalanced conditions
 - Switching transients
 - Harmonics
 - Short circuits
 - Mechanical stresses
 - Frequent overloading conditions
 - Vibrations
 - Pollution & Dust
Literature Review

- Transformer is a consolidated technology but is still subject to research on control/monitoring systems and working conditions.
- Optimisation of EAF Transformer is a recent topic with increasing interest by the research community.
- LCC model for transformers are widely available in literature but none of them is focused on EAF Transformers.

Papers appeared in Scientific Journals

EAF SMARTrafo Solution

Keywords search performed with: Scopus
Goal

- Development of a Life Cycle Cost (LCC) model considering relevant aspects for EAF context
 - Impact of operating conditions
 - Maintenance activities
- In order to select the best design solution for a specific load cycle
Agenda

- Introduction
- Life cycle cost model
- SMART Transformer
- Numerical study
- Conclusions
LCC model

EAF Transformer price

Operating costs
- Energy losses costs
- Cooling system costs

Maintenance costs

\[LCC = EAF \text{ Transformer price} + \sum_{i=1}^{n} \frac{Ownership \text{ cost} + Maintenance \text{ cost}}{(1 + \rho)^i} \]
LCC model

EAF Transformer price

Operating costs
- Energy losses costs
- Cooling system costs

Maintenance costs

- Transformer → capital intensive equipment
- Price results of
 - design specifications
 - additional equipment
LCC model

EAF Transformer price

Operating costs
- Energy losses costs
- Cooling system costs

Maintenance costs

Energy losses [kW h/cycle] = \(P_0 + P_k \sum_{j=1}^{m} x_j^2 \)

- No-load losses
- Load losses
- LV terminations losses
- On service vs laboratory conditions

TAILOR MADE CONFIGURATION
- Cooling system control
 - Without \(\rightarrow \) Oversized cooling power
 - With \(\rightarrow \) Modular utilization
 - …
Example 1: The Low Voltage terminations

- Low Voltage bus bars/pipes
 - losses evaluation with FEM Model for two different layout options

<table>
<thead>
<tr>
<th>Losses</th>
<th>In the cover</th>
<th>1 kW</th>
<th>4.5 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>In LV bus bars</td>
<td>54 kW</td>
<td></td>
<td>74 kW</td>
</tr>
</tbody>
</table>

+43%
The bus bars arrangement can drastically increase the losses and oblige to select expensive solution.
Example 2: The Cooling System Effect

Transformer

\[P_{\text{trafo}} \quad \rightarrow \quad P_{\text{out}} \quad \rightarrow \quad P_{\text{cooling}} \quad \rightarrow \quad P_{\text{cooling}}'' \quad \rightarrow \quad P_{\text{loss}} \]

Load [MVA]

Pcooling [kW]

00:00 04:48 09:36 14:24 19:12 00:00

No cooling control vs With cooling

00:00 04:48 09:36 14:24 19:12 00:00

EAF SMARTrafo Solution
LCC model

EAF Transformer price

Operating costs
• Energy losses costs
• Cooling system costs

Maintenance costs
• Maintenance activities
 (i.e. inspections and actions performed)
• Out-of-service
 (i.e. steel production lost due to downtime)
• Reliability penalty
 (i.e. replacement of the transformer due to failure)
Agenda

- Introduction
- Life cycle cost model
- SMART Transformer
- Numerical study
- Conclusions
Why a SMART Transformer?

- Use condition (EAF) affects the design customization of the EAF Trafo
SMART Transformer Approach

GOAL

LIFECYCLE

TOOLS & DEVICES

ENERGY EFFICIENCY

RELIABILITY

DESIGN TOOLS

MONITORING & CONTROL SYSTEM

DESIGN

USE

EAF SMARTTrafo Solution
Design and Use

Main aspects:
- Secondary Voltage range
- Number of taps
- Short circuit impedance
- Losses

Design and Use

- **DESIGN**
 - Design principles
 - Tailor-made solutions (On-service operating conditions)
 - Materials selection
 - Components & Accessories

- **USE**
 - Temperature control
 - Working time management
 - Load Management
 - Conditions monitoring and control

Main aspects:
- Secondary Voltage range
- Number of taps
- Short circuit impedance
- Losses

EAF SMARTrafo Solution

18
How to design a SMART Transformer

Secondary voltage range
- The designed internal power is related to the secondary voltage range:
 \[P_d = \frac{P_n}{2} \left(\frac{V_{\text{max}}}{V_{\text{min}}} \right) + \frac{V_{\text{max}}}{V_{\text{p}}^{\frac{1}{2}}} \]
- An unused range of voltage increase the designed power
- A wide range of voltage taps leads to expensive and improper design solutions

Number of taps
- An incorrect number of taps leads to:
 - Long time period for the transition through the secondary voltage range
 - Expensive tap changer solution or transformer schema solution

Short circuit impedance
- The variability of the short circuit impedance highly influences the design and the efficiency of the transformer

Losses
- The target losses should be carefully evaluated in terms of global efficiency, not only in terms of price reduction criteria
- Total losses should encompasses all the transformer and related elements losses
 - cooling system
 - low voltage terminations
 - auxiliary accessories
 -

EAF SMARTTrafo Solution
Monitoring & Control system

REAL-TIME MEASUREMENT
Immediate information on component/system parameters

SENSOR

DATALOGGER

DATA RECORDING
Time series analysis

FEEDBACK & CONTROL

CONTROL ACTIONS
- Cooling system control
- Deteriorated condition prevention
- Early failure detection

Monitoring & Tracking

Web based Advanced Monitoring and Feedback System

Feedback & Control

EAF SMARTrafo Solution
Parameters Effects

ENERGY EFFICIENCY
- Oil temperature
- Hotspot temperatures
- Tap Position
- Energy and water consumption

PARAMETER
- Oil temperature
- Hotspot temperatures
- Tap Position
- Energy and water consumption

INDICATOR
- Temperature
- Load current
- Power, water

TOOL & DEVICE
- Temperature sensor (Pt100)
- Thermal model
- Thermal imaging
- Accelerometer
- Voltage metering
- Buchholz
- DGA
- Pressure sensor/valve
- Level indicators

RELIABILITY
- Mechanical deformation
- Insulation degradation
- Gas-in-oil
- Moisture
- Oil Pressure
- Oil Level

- Vibro-acoustic spectrum
- Voltage
- Nature/quantity of gas (and moisture)
- Pressure
- Level

EAF SMARTrafo Solution
Agenda

- Introduction
- Life cycle cost model
- SMART Transformer
- Numerical study
- Conclusions
Numerical example

DATA
- Load Cycle: 45 min at 160 MVA, 15 min at 0 MVA
- 250 days a year x 20 years
- Transformer A: 140 MVA (+ 15% overload)
- Transformer B: 160 MVA
- OFWF cooling system: 2 x 75%
- Annual discount rate, \(r \): 5%
- Electricity cost: 0.15 €/kWh
- Contribution margin: 100 €/ton
- Maintenance activities
 - 100 h per year of out-of-service
 - 50 k/year

<table>
<thead>
<tr>
<th></th>
<th>Transformer A</th>
<th>Transformer B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power [MVA]</td>
<td>140</td>
<td>160</td>
</tr>
<tr>
<td>Purchasing price [k€]</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>No-load losses [kW]</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td>Load losses [kW]</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Cooling system cost [k€]</td>
<td>29.54</td>
<td>21.02</td>
</tr>
</tbody>
</table>

![Failure Probability vs Lifetime](image_url)
Tailor made solution effects

<table>
<thead>
<tr>
<th>Power</th>
<th>Existing Transformer at rated power</th>
<th>New Transformer at reduced power</th>
<th>Existing Transformer in overload</th>
<th>New Transformer at rated power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformer A</td>
<td>140 MVA</td>
<td>140 MVA</td>
<td>160 MVA</td>
<td>160 MVA</td>
</tr>
<tr>
<td>Transformer B</td>
<td>140 MVA</td>
<td>160 MVA</td>
<td>1050 kW</td>
<td>800 kW</td>
</tr>
</tbody>
</table>

New TES vs existing transformer for a cycle with 45 min at 160 MVA and off for 15 min: \(-188 \text{ [kWh/cycle]}\)

<table>
<thead>
<tr>
<th>Transformer A</th>
<th>Transformer B</th>
</tr>
</thead>
<tbody>
<tr>
<td>140 MVA</td>
<td>160 MVA</td>
</tr>
<tr>
<td>Life cycle cost</td>
<td>15,541</td>
</tr>
<tr>
<td>Transformer price</td>
<td>1200</td>
</tr>
<tr>
<td>Losses cost</td>
<td>13,296</td>
</tr>
<tr>
<td>Cooling system cost</td>
<td>368.12</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>677.15</td>
</tr>
</tbody>
</table>

LCC reduction of 17.12%
Example: Cooling control effects

<table>
<thead>
<tr>
<th></th>
<th>Transformer A</th>
<th>Transformer B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140 MVA</td>
<td>160 MVA</td>
</tr>
<tr>
<td>Life cycle cost</td>
<td>[k€] 15,490</td>
<td>12,778</td>
</tr>
<tr>
<td>Transformer price</td>
<td>[k€] 1230</td>
<td>1530</td>
</tr>
<tr>
<td>Losses cost</td>
<td>[k€] 13,296</td>
<td>10,364</td>
</tr>
<tr>
<td>Cooling system cost</td>
<td>[k€] 286.67</td>
<td>204.24</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>[k€] 677.15</td>
<td>679.76</td>
</tr>
</tbody>
</table>

Transformer A + cooling control
- 17.51%

Transformer B + cooling control
+24%

- Transformer price
- Losses cost
- Cooling system cost
- Maintenance cost

EAF SMARTfrafo Solution
Agenda

- Introduction
- Life cycle cost model
- SMART Transformer
- Numerical study
- Conclusions
Conclusions

- The improvements performed in the last decades on the EAF do not reach the limit in terms of process efficiency
 - holistic approach considering all relevant components of the process
 - greater part of the melting energy passes through electric transformer
- LCC model on transformer already exist but none of them are specific for the EAF transformer
 - EAF transformers are exposed to specific and more critical conditions than power and distribution transformers, thus it is necessary to consider real operations conditions
- The present work proposed a new holistic LCC model to determine total ownership cost of EAF transformers
 - evaluation of a technological solution that best suits the system requirements to minimize electrical losses, incorporating the proper design of all components (i.e. on-load-tap changer, LV terminals, etc.);
 - integration specific costs associated with the operation and components configuration effect, using a feedback regulation systems incorporated in the process control system (i.e. regulations of pumps for the cooling system);
 - implementation of an advanced monitoring and control system for the transformer and its main components to improve its lifecycle and optimise planned maintenance;
- A couple of numerical example showed the impact of the real conditions and operation on alternative solutions.
Conclusions
THANKS FOR YOUR KIND ATTENTION
Contacts Information

Simone Zanoni
Department of Mechanical and Industrial Engineering
simone.zanoni@unibs.it